Modelling epistasis in genetic disease using Petri nets, evolutionary computation and frequent itemset mining

نویسندگان

  • Michael Mayo
  • Lorenzo Beretta
چکیده

Petri nets are useful for mathematically modelling disease-causing genetic epistasis. A Petri net model of an interaction has the potential to lead to biological insight into the cause of a genetic disease. However, defining a Petri net by hand for a particular interaction is extremely difficult because of the sheer complexity of the problem and degrees of freedom inherent in a Petri net’s architecture. We propose therefore a novel method, based on evolutionary computation and data mining, for automatically constructing Petri net models of non-linear gene interactions. The method comprises two main steps. Firstly, an initial partial Petri net is set up with several repeated sub-nets that model individual genes and a set of constraints, comprising relevant common sense and biological knowledge, is also defined. These constraints characterise the class of Petri nets that are desired. Secondly, this initial Petri net structure and the constraints are used as the input to a genetic algorithm. The genetic algorithm searches for a Petri net architecture that is both a superset of the initial net, and also conforms to all of the given constraints. The genetic algorithm evaluation function that we employ gives equal weighting to both the accuracy of the net and also its parsimony. We demonstrate our method using an epistatic model related to the presence of digital ulcers in systemic sclerosis patients that was recently reported in the literature. Our results show that although individual “perfect” Petri nets can frequently be discovered for this interaction, the true value of this approach lies in generating many different perfect nets, and applying data mining techniques to them in order to elucidate common and statistically significant patterns of interaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolving Concurrent Petri Net Models of Epistasis

A genetic algorithm is used to learn a non-deterministic Petri netbased model of non-linear gene interactions, or statistical epistasis. Petri nets are computational models of concurrent processes. However, often certain global assumptions (e.g. transition priorities) are required in order to convert a non-deterministic Petri net into a simpler deterministic model for easier analysis and evalua...

متن کامل

Ramp: High Performance Frequent Itemset Mining with Efficient Bit-Vector Projection Technique

Mining frequent itemset using bit-vector representation approach is very efficient for small dense datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. We also present a new frequent itemset mining algorithm Ramp (Real Algorithm...

متن کامل

Parallelizing Frequent Itemset Mining Process using High Performance Computing

Data is growing at an enormous rate and mining this data is becoming a herculean task. Association Rule mining is one of the important algorithms used in data mining and mining frequent itemset is a crucial step in this process which consumes most of the processing time. Parallelizing the algorithm at various levels of computation will not only speed up the process but will also allow it to han...

متن کامل

Computing Minimal Siphons in Petri Net Models of Resource Allocation Systems: An Evolutionary Approach

Petri Nets are graph based tools to model and study concurrent systems and their properties; one of them is liveness, which is related to the possibility of every part of the system to be activated eventually. Siphons are sets of places that have been related to liveness properties. When we need to deal with realistic problems its computation is hard or even impossible and this is why in this p...

متن کامل

Ramp: Fast Frequent Itemset Mining with Efficient Bit-Vector Projection Technique

Mining frequent itemset using bit-vector representation approach is very efficient for dense type datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. To check the efficiency of our bit-vector projection technique, we present a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011